Weighted Model Counting in FO2 with Cardinality Constraints and Counting Quantifiers

Sagar Malhotra1, Luciano Serafini1

1Fondazione Bruno Kessler, Italy
2University of Trento, Italy

To appear in Proceedings of AAAI 2022

Unary and Binary Properties in FO2

Let us have a FOL language with a unary predicate k_i and a binary predicate R_{xy}. Then, for any domain constant c exactly one of the following unary property is true:

$\text{Ac} \land \text{Rec} \lor \text{Ac} \land \neg \text{Rec} \lor \neg \text{Ac} \land \text{Rec} \lor \neg \text{Ac} \land \neg \text{Rec} \tag{1}$

For 5 domain elements some examples of unary configurations are given as follows:

- For $\text{Ac} \land \text{Rec}$ Configuration:
- For $\text{Ac} \land \neg \text{Rec}$ Configuration:
- For $\neg \text{Ac} \land \text{Rec}$ Configuration:
- For $\neg \text{Ac} \land \neg \text{Rec}$ Configuration:

In general, for a language with n unary properties over a domain elements, we have 2^n ways such that k_i constants realize the i^{th} property. For any pair of domain constants (c, d), exactly one of the following binary properties is true:

$\text{Red} \land \text{Red} \lor \text{Red} \land \neg \text{Red} \lor \neg \text{Red} \land \text{Red} \lor \neg \text{Red} \land \neg \text{Red} \tag{2}$

Given a unary configuration, for each set of domain elements, the following binary configurations are possible:

- Configuration:
- Configuration:
- Configuration:
- Configuration:

In general, for a language with n binary properties given a configuration of unary properties by R_{xy}, then for any pair of unary properties (c, d), we have $2^{\binom{n}{2}}$ possible ways such that R_{xy} configurations can realize the j^{th} binary property, where

$k(i,j) \in \{k_1, k_2, k_3, k_4\}$

with $k_1 = 1$, $k_2 = 2$, $k_3 = 3$, $k_4 = 4$.

Existential Quantifiers (Special Case)

FOMC($\forall x, \forall y, \text{F}(x, y) \land \forall x, y, \neg \text{F}(x, y)$)

<table>
<thead>
<tr>
<th>Φ</th>
<th>$\neg \Phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall x, \forall y, \text{F}(x, y)$</td>
<td>$\forall x, \forall y, \neg \text{F}(x, y)$</td>
</tr>
</tbody>
</table>

Counting Quantifiers (Special Case)

FOMC($\forall x, \forall y, \text{F}(x, y) \land \forall x, y, \neg \text{F}(x, y)$)

<table>
<thead>
<tr>
<th>Φ</th>
<th>$\neg \Phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall x, \forall y, \text{F}(x, y)$</td>
<td>$\forall x, \forall y, \neg \text{F}(x, y)$</td>
</tr>
</tbody>
</table>

Weighed Model Counting

FOMC can be converted to WPOMC by just adding a multiplicative factor $w(k, \bar{k})$ to every occurrence of $F(k, \bar{k}, (\text{R}_{xy}))$ in any counting formula:

$w(k, \bar{k}) \in E^*$

$w(k, \bar{k})$ is a strictly more expressive weight function than symmetric weight functions.