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m System Model Cont. Results Scenario 2

5G and beyond 5G communication systems are evolving
for computation-intensive and communication-sensitive
applications with diverse Quality-of-Service requirements
on processing, bandwidth, latency, and reliability. This
work focuses on an ultra-dense edge network with Multi-
access Edge Computing facilities, serving agents that
execute their tasks by touring the cells. Specifically, we
propose a novel methodology for optimally and flexibly
managing task offloading in the context of heterogeneous
computing and communication services required by real-
time robotic applications. The proposed approach takes
the number of admitted service migrations and the QoS
upper and lower bounds as binding constraints. We model
the QoS evolution based on the agent positions, the MEC
servers serving the agents, the QoS requirements, the
communication capabilities in the edge network, and the
computing capabilities of the servers. The model is
formalized as a mixed-integer linear program to obtain an
optimal schedule for the service migrations and
communication and computation bandwidth allocation.

The research on the next generation of mobile networks is
chasing the ambitious objective to jointly support, within a
flexible and powerful communication and computing
infrastructure, a very large number of heterogeneous
services. In this context, an effective management of task
offloading is crucial to deliver high-quality services, hence
the need for the optimal management of computing and
communication resources at the network edge.

A novel methodology (shown in fig. 1) is adopted to
manage B5G task offloading optimally and flexibly in the
context of real-time applications, which are represented
well in the robotic domain. We considered an industrial
automation scenarios, where each robot is shown to be
connected to a network attachment points that provides
wireless connectivity, a simplest case is shown in Fig. 2.
The attachment points are connected to an edge network
with computing capabilities provided by MEC servers. The
agents then connect to one of the available MEC servers
through edge links with fixed communication capabilities.
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The network is composed of a set of cells |G|, {C, € G}, a
set of moving robots A, {A; € A}, a set of services M,
{M;; ; € M}, and a time horizon [l CN.
Each cell has a total computation and communication
bandwidth capacity respectively represented by:
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« Migration cost of every service from one cell to another
is represented by:
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* The final QoS objective function of our model Is defined
by:
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* Where rp:f, is the QoS function of three variables,
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computation, communication, and latency, and
£,4¢ M 4 ¢ denotes the service migration cost.
* ;4 represents the communication latency time

between any service M & A
» The constraints puts a bound on communication and
computation bandwidth allocated to any service in a cell
C, at time ¢ must be less than the total capacity of cell.
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Scenario 1 & Results

A small 8-by-1 mesh network with 8 cells, 15 time points,
2 agents, and 3 VMs/agent is shown below in fig. 2.
» @, =100 GIPS, ag‘;“ =15 GIPS, tr}:—“" = 90 GIPS,

150 Mbps, 7" =900 Mbps, and 47" = 23 ms.
The result shows:
* The positions of the VMs over time on the left.
* The load on MEC server average processing in the middle
with the mean p, at the top of each plot.
* The mesh-network link average traffic on the right with
the mean p, at the top.
* The average computation B.W., Communication B.W., and
latency shown in top of table in row heading.
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Figure 3

A star/mesh topology with 100 cells, 19 time points, 40
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agents, 3 VMs/agent.
# Our formulation effectiveness is shown on the VM
migration  frequency, outage count, average

computation bandwidth, and latency (system KPIs) for
different VM migration costs & ;.

» We used baseline scenarios that always migrate the
VM’s in the cell where their agent is. This gives every
VM the lowest latency but the highest migration
frequency and possibly some outage times
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Conclusion and Future Work

In this paper, we have considered the problem of
allocating resources at the edge of a B5G network to real-
time services optimally by formulating a MILP whose
decision variables are the amount of computation and
communication resources and the MEC servers to execute
the VMs providing the services at each time point. Using
state-of-the art optimization tools allows us to treat
problems of reasonable size in the number of cells and
agents when the agent trajectories are known up-front,
and the optimization can be performed offline before
starting the system operations. When the size of the
problem grows or when the system is highly dynamic and
requires online optimization, heuristic approaches are
needed to produce high-quality sub-optimal solutions. This
is one of the most promising research areas that we
reserve for our future investigations, which include
futuristic scenarios where the base stations are mobile
(e.g., aerial or terrestrial vehicles) and need an optimal
decision on their positions as well.
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