xAI-based Regularizers for Graph Neural Networks

Vincenzo Marco De Luca¹, Antonio Longa¹, Pietro Liò² and Andrea Passerini¹ ¹University of Trento ²University of Cambridge

vincenzomarco.deluca@unitn.it **Introduction and Background** Intuition **GNN Limitations Experimental evidence** In the initial stages of experiments with synthetic datasets, it became evident that an increase in validation loss leads to a decrease in sufficiency Overfitting Out-of-distribution generalization Oversmoothing Oversquashing Noise propagation Loss and sufficiency Train loss Train sufficiency
Validation loss GNN and xAI 1.0 **INTEGRATED**GRADIENTS integrates the gradient along a path. Specifically, given $x' \in \mathbf{R}^d$ a baseline input which represents a neutral input, the resulting explanation is computed as: ••• Start overfitting 0.8 $_{\text{DGRADHEVYN}}[n] = (X_n - x') \int_0^1 \frac{\partial f(x' + \alpha(X_n - x'))}{\partial X_n} \, d\alpha$ H ∂X_n 0.6 Sufficiency 0.4 Sufficiency F_{suf} is the difference in the predicted probability when computed on the graph G and on the explanation. Since the explanation is a soft mask, we fix a number of levels $N_t \in \mathbb{N}$ and apply an incremental thresholding with N_t+1 threshold levels $l_k = k/N_t, k = 0, \dots, N_t$ Where we define $G_{sos}(t_k)$ to be the hard mask explanation derived from G_{sos} with threshold t_k $F_{suf} = \frac{1}{N_t-1} \sum_{k=1}^{N_t-1} (g(G) - g(G_{sosp}(t_k)))$ 02 0.0 ó 50 150 Epochs 250 100 200

METHODS

PRELIMINARY RESULTS

Dataset statistics						
	Cora	Citeseer				
Nb. nodes	2708	3327				
Nb. edges	5429	4732				
Nb. features	1433	3703				
Nb. classes	7	6				

GCN					
Model	Cora	Citeseer			
Base	81.5 ±(0.3)	70.3 ±(0.9)			
LP	70.4 ±(0.0)	50.4 ±(0.0)			
MixHOP	81.9 ±(0.2)	71.4 ±(0.4)			
GAUG	83.6 ±(0.5)	73.3 ±(1.1)			
DropE dge	82.8 ±(0.9)	72.3 ±(1.3)			
GraphMix	84.5 ±(0.6)	74.7 ±(0.6)			
GRAND	84.3 ±(0.3)	74.2 ±(0.3)			
NodeAug	85.1 ±(0.4)	74.9 ±(0.5)			
Nasa	84.7 ±(0.3)	75.5 ±(0.4)			
xReg-S	84.6 ±(0.4)	75.2 ±(0.4)			
xReg-T	85.3 ±(0.5)	75.9 ±(0.4)			

GAT					
Model	Cora	Citeseer			
Base	83.0 ±(0.7)	72.5 ±(0.7)			
xReg-S	84.4 ±(0.5)	75.6 ±(0.4)			
xReg-T	85.5 ±(0.8)	76.2 ±(0.6)			

GraphSAGE							
Model	Cora	Citeseer					
Base	81.6 ±(0.4)	70.4 ±(1.1					
xReg-S	83.3 ±(0.5)	73.8 ±(0.9					
xReg-T	83.5 ±(0.7)	74.1 ±(1.0					

Additional explainers Regularizer hyperparameter tuning

FUTURE WORKS

Explainability as penalty Ablation study xAI for robust learning