

Quintino Francesco Lotito¹, Martina Contisciani², Caterina De Bacco², Leonardo Di Gaetano³,

Luca Gallo³, Alberto Montresor¹, Federico Musciotto⁴, Nicolò Ruggeri^{2,5}, Federico Battiston³

What are

hypergraphx

@hgx_team

higher-order networks?

Systems with non-dyadic interactions are

ubiquitous, with examples ranging from

cellular networks, drug recombination,

and collaboration networks.

arbitrary size.

structural and functional brain networks,

human and animal face-to-face interactions,

Higher-order interactions can be naturally

described by alternative mathematical

structures such as hypergraphs, where

hyperedges connect groups of nodes of

Lotito, Quintino Francesco, et al. "Hypergraphx: a library for higher-order network analysis." Journal of Complex Networks 11.3 (2023): cnad019.

HGX is a Python library for the analysis of real-world complex systems with group interactions and provides a comprehensive suite of tools and algorithms for constructing, visualizing, and analyzing hypergraphs.

What tools are implemented?

Data storage & conversion: store higher-order data as hypergraphs; convert to bipartite networks, maximal simplicial complexes, line graphs, dual hypergraphs; add features to hyperedges (e.g., sign, weight, direction, time) Centrality measures: hyperdegree, spectral approaches. Motif analysis: exact and approximated algorithms Community detection: overlapping communities and hyperedge inference; core-periphery organization. Filtering: statistically validated hyperedges and interacting node groups.

Generators: Erdős-Rényi, scale-free, configuration, and communitybased models; activity-driven model for temporal group interactions. Dynamical processes: synchronization, social contagion, and random walks.

Visualization: visual insights into the higher-order organization of real-world systems

···· ICT DAYS

What data is available?

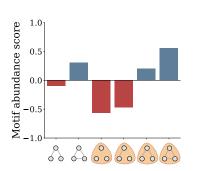
Animal proximity

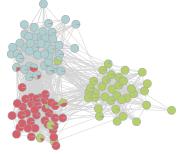
Human face-to-face interactions

Co-authorship

Votes

E-mail exchange


Gene-disease


Drug associations

Higher-order motif analysis

hypergraphx-motif-analysis-tutoria port compute_motifs import load_hyperg t plot_motifs

load_hypergraph("../test_data/hs/hs.js f_profile = compute_motifs(H, order=3, _motifs(motif_profile) n", file_type="json" runs confia model=5)

1 Department of Information Engineering and Computer Science, University of Trento, Trento, Italy

- 2 Max Planck Institute for Intelligent Systems, Cyber Valley, Tübingen, Germany
- 3 Department of Network and Data Science, Central European University, Vienna, Austria
- 4 Dipartimento di Fisica e Chimica Emilio Segrè, University of Palermo, Palermo, Italy
- 5 Department of Computer Science, ETH, Zürich, Switzerland

Quick start

Higher-order communities

- hypergraphx-communities-tutoria
- s import normalize_ar
- vpergraphy.viz i rt draw communities
- ./test data/hs/hs.ison", file type="ison"
 - Hypery w. = model_fit(H) halize_array(u, axis=1) halize_array(u, axis=1) halize=0.8, opt_dist=1, wedge_width=0.4, te_labels=False, scale=0.8, opt_dist=1, wedge_width=0.4, te_cours=0, wedge_color='darkgray')

述 quintino.lotito@unitn.it

Visualization

- hypergraphy-viz-tutoria
- readwrite.loaders impor filters import get_svh viz.draw_hypergraph imp

- _hypergraph(

_by_order=hyperedge_color_by_order, acecolor_by_order=hyeperedge_facecolor_by_order, , node_color='#E2E0DD', node_facecolor='black',