SAT Enumeration

Task: Find all the assignments that satisfy a given Boolean formula φ

Example

$$
\varphi \stackrel{\text { def }}{=} A \vee(B \wedge C)
$$

Set of total assignments:
Set of (disjoint) partial assignments:

$$
\mathcal{T} \mathcal{T} \mathcal{A}(\varphi)=\left\{\begin{array}{lll}
\{ & A, \quad B, & C
\end{array},\right.
$$

$\{A, B, \neg C\}$,
$\{A, \neg B, C\}$,
$\{A, \neg B, \neg C\}$,
$\{\neg A, B, C\}\}$
Goal: find a $\mathcal{T} \mathcal{A}(\varphi)$ as compact as possible
\Longrightarrow Why? Compact representation, faster enumeration

- Key problem: find short partial assignments

Current approach \& Efficiency issues

SAT solvers work with formulas in Conjunctive Normal Form (CNF) $\left(l_{11} \vee l_{12} \vee \ldots\right) \wedge\left(l_{21} \vee l_{22} \vee \ldots\right) \wedge$
\square Convert φ to CNF using the Tseitin CNF Encoding CNF $_{\mathrm{T}_{\mathrm{s}}}$
Enumerate $\mathcal{T} \mathcal{A}\left(\operatorname{CNF}_{\mathrm{T}_{\mathrm{s}}}(\varphi)\right)$ projected onto the original variables only

Example

In the example above:
Label each sub-formula with a fresh variable
$\mathrm{CNF}_{\mathrm{Ts}}(\varphi)=(A \vee S) \wedge \mathrm{CNF}(S \leftrightarrow B \wedge C)$
Enumerate $\mathcal{T} \mathcal{A}\left(\operatorname{CNF}_{\mathrm{Ts}}(\varphi)\right)$ projected onto $\{A, B, C\}$ $\mathcal{T A}(\varphi)=\left\{\begin{array}{lll}\left\{\begin{array}{lll}\{\neg S, & A, \neg B \\ \{\neg S, & A, & B, \neg C\end{array}\right\},\end{array}\right.$,

Notice: Two assignments
instead of one!

What causes the issues?

- Definitions as $\left(S_{i} \leftrightarrow \varphi_{i}\right)$ force to assign a truth value also to (variables in) φ_{i} Partial assignments are unnecessarily-long and $\mathcal{T} \mathcal{A}(\varphi)$ is big
- TLDR: Tseitin CNF is not suitable for enumeration since " \leftrightarrow " definitions do not allow finding short partial assignments

Motivation: SAT Enumeration for Probabilistic Inference

How do we count?

- Weighted Model Counting (Boolean) $\operatorname{WMC}(\varphi, w \mid \mathbf{A}) \stackrel{\text { def }}{=} \sum_{\mu \in \mathcal{T} \mathcal{T}(\varphi)} w(\mu)$
- Weighted Model Integration $(\operatorname{SMT}(\mathcal{L} \mathcal{R} \mathcal{A}))$ $\operatorname{WMI}(\varphi, w \mid \mathbf{A}, \mathbf{x}) \stackrel{\text { def }}{=} \sum_{\mu^{\mathbf{A}}, \mu \mathcal{L}, \mathcal{A} \in \mathcal{T} \mathcal{A}(\varphi)} \int_{\mathcal{C R}, A} w(\mathbf{x} \mid \mathbf{A}) d \mathbf{x}$ $=\sum_{\mu^{\mathrm{A}} \cup \mu^{\mathcal{R} \mathcal{A}} \in \mathcal{T} \mathcal{A}(\varphi)} \int_{\mu^{\mathcal{R} \mathcal{A}}}$

Our solution

- Convert the formula in Negation Normal Form (NNF)
- Use the Plaisted\&Greenbaum CNF
\Longrightarrow add definitions as $\left(S_{i} \rightarrow \varphi_{i}\right)$ if φ_{i} occurs only positively

Example

In the example above:
$\square \varphi$ is already in NNF, label each sub-formula using single implications $\mathrm{CNF}_{\mathrm{PG}}(\operatorname{NNF}(\varphi))=(A \vee S) \wedge \operatorname{CNF}(S \rightarrow B \wedge C)$

- Enumerate $\mathcal{T} \mathcal{A}\left(\operatorname{CNF}_{\mathrm{PG}}(\operatorname{NNF}(\varphi))\right)$ projected onto $\{A, B, C\}$ $\left.\mathcal{T} \mathcal{A}(\varphi)=\frac{\left\{\begin{array}{rrr}\{-S, A & \}, \\ \{S, \neg A, & B, & C\end{array}\right\}}{}\right\}$

Notice: Only one assignment

Why CNF $_{\text {PG }}$?
\square By assigning $\neg S_{i}$ the definition $\left(S_{i} \rightarrow \varphi_{i}\right)$ can be "ignored"
\Longrightarrow we are not forced to assign a truth value to (variables in) φ_{i} anymore
Why NNF?
If φ_{i} occurs positively and negatively, CNF $_{\text {PG }}$ adds ($S_{i} \leftrightarrow \varphi_{i}$) anyway
\square NNF splits φ_{i} into φ^{+}and φ^{-}, each occurring only positively
\square Then CNF $_{\text {PG }}$ labels them with $\left(S_{i}^{+} \rightarrow \varphi^{+}\right)$and $\left(S_{i}^{-} \rightarrow \varphi^{-}\right)$
The truth value of φ_{i} can be ignored by assigning $\neg S_{i}^{+}$and $\neg S_{i}^{-}$

Experimental results

Setting:

■ Convert each non-CNF formula to CNF using $\mathrm{CNF}_{\mathrm{T}}, \mathrm{CNF}_{\mathrm{PG}}$, or $\mathrm{NNF}+\mathrm{CNF}_{\mathrm{PG}}$

- Enumerate the assignments projected on the original variables using MathSAT

Results \& Conclusions

- $\mathrm{CNF}_{\mathrm{T}_{\mathrm{s}}}$ is not good for enumeration
- CNF $_{\text {PG }}$ solves its problems only in part
$\square \mathrm{NNF}+\mathrm{CNF}_{\mathrm{PG}}$ is the best choice
\Longrightarrow drastically reduce size of $\mathcal{T} \mathcal{A}(\ldots)$ and enumeration time by several orders of magnitude
Notice the logarithmic scale of the axes!

Future work:

- Heuristics to better exploit the encoding
- Extend to non-disjoint SAT enumeration
- Extend to disjoint and non-disjoint SMT enumeration
- Apply it to WMI computation

