Object-aware Gaze Target Detection

Francesco Tonini^{1,2} Nicola Dall'Asen^{1,3}

²Fondazione Bruno Kessler, Trento, Italy

³University of Pisa, Pisa, Italy

Elisa Ricci^{1,2}

¹University of Trento, Trento, Italy

Cigdem Beyan¹

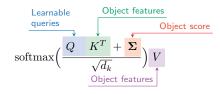
Can we predict *where* and *what* a person is looking at?

Where: predict the image region on which the person is looking.

What: if a person is looking at an object, predict box and class of it.

Single end-to-end method for person and gazed-object detection.

Detect the gaze of all people in a single forward pass.

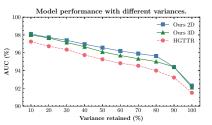

Detect heads and objects with a single object backbone

? Predict object gaze scores for each person's gaze.

? Estimate a person's gaze in **absence** of objects.

Object Detector Transformer B ε ÷ : : \mathcal{D} **-**↑ Gaze Cone Watch Pour Object Score **S** Δ 5 Gaze : -CO → Heatmar Predictor -0`0 Ħ Attention bias Heatman No cone-object skip

OUR PROPOSAL - GAZE OBJECT TARGET DETECTOR


Predict gaze heatmap, object box and class.

If no object is gazed, we predict a gaze heatmap from head features only.

QUANTITATIVE RESULTS & THE EFFECTS OF VARIANCE IN ANNOTATIONS

OUALITATIVE RESULTS

Method	Modalities	Multiperson Gaze	GazeFollow			VideoAttentionTarget		
				Distance \downarrow		In frame		Out of frame
			AUC \uparrow	Avg.	Min.	AUC ↑	Dist. \downarrow	AP ↑
Recasens et al.	R	×	0.804	0.233	0.124	-	-	-
Chong et al.	R + T	×	0.902	0.142	0.082	0.812	0.146	0.849
Tonini et al.	R + D	×	0.894	0.165	-	0.894	0.182	-
Tu et al.	R	\checkmark	0.917	0.133	0.069	0.904	0.126	0.854
Ours	R	 Image: A second s	0.922	0.072	0.033	0.923	0.102	0.944
Ours	R + D	1	0.922	0.069	0.029	0.933	0.104	0.934

! Due to the **low consensus** across annotators, we evaluate our method under different levels of **variance** across individual gaze annotation.

3D cone

2D cone

Predict the 2D/3D gaze cone(field-of-view) for each head.

in the image.

Calculate the probability that an object is gazed by a person based on the gaze cone scores.

Detect and classify objects/heads

Model the relationships for each head-object pair.