
● Large language models are now capable of complex 
problem-solving, such as mathematics and competitive 
programming

● However, they exhibit limited backtracking abilities and 
often fail to detect errors in their own outputs [1]

● Despite this, there has been limited effort to 
reverse-engineer why models struggle with error detection
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John has 5 eggs and he buys 9 more at the 
supermarket, how many eggs does he have in total?

5 + 9 = 13

What mechanisms drive the detection of simple arithmetic errors in language models?

Problem: Anne has 6 apples. She gets 7 more apples. 
How many apples does she have now? Reasoning: 
Anne has 6 + 7 = 13 apples. So, she has 17 apples in 
total. Answer: The above reasoning is → incorrect
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The Error Detection Mechanism Computation vs. Validation

We consider simple aritmetic problem involving a single addition and three types of errors: 
1) errors in the arithmetic result 2) errors in the final answer 3) errors in both these positions

We evaluate 4 small Instruction-tuned LMs: Qwen-2.5-(Math)-1.5B-Instruct, Llama-3.2-3B-Instruct, Phi-3.5-Mini-Instruct

We identified subgraphs, or circuits, for 
detecting errors in the arithmetic result 
and final answer positions using Edge 
Attribution Patching (EAP) [2]
EAP approximates the effect of replacing 
activations from prompts without an 
error with those from prompts 
containing an error to identify which 
components are causally responsible for 
predicting that there is an error.

We identified within these circuits a 
set of Consistency Heads—attention 
heads that assess the surface-level 
alignment of numerical values in the 
result and final answer. These heads 
are typically found in the middle 
layers.
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Consistency Heads play an important 
causal role in error detection, supported 
by two key results:
1. We found that models exhibit a strong 

bias toward classifying prompts with 
errors in both positions as “correct.”

2. Causally intervening on these heads 
improves the models’ performance on 
such prompts.

Accuracy on Both errors

Our results suggest that models validate prompts by relying on surface-level 
consistency checks.

But what about the arithmetic result? Can models compute it correctly? (100%!)

We used EAP to identify a circuit responsible for computing the arithmetic result.

We trained linear probes [3] to predict 
the correct arithmetic result based on the 
hidden states of the model. This allowed 
us to understand which layers encode 
information useful for predicting the 
arithmetic result.
Only the later layers show high 
accuracy, indicating that the information 
is not available in the middle layers, 
where consistency heads operate.

Bridging the gap between computation 
and validation by adding representations 
from higher layers to earlier ones is highly 
effective. 
This approach boosts the accuracy of 
models on prompts with errors in both 
positions, without negatively affecting 
prompts with only one type of error.
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