
● Large language models are now capable of complex
problem-solving, such as mathematics and competitive
programming

● However, they exhibit limited backtracking abilities and
often fail to detect errors in their own outputs [1]

● Despite this, there has been limited effort to
reverse-engineer why models struggle with error detection

The Validation Gap: A Mechanistic Analysis
of How Language Models Compute
Arithmetic but Fail to Validate It
Leonardo Bertolazzi1, Philipp Mondorf2,3, Barbara Plank2,3, Raffaella Bernardi1
1DISI and CIMeC, University of Trento, 2MaiNLP, LMU, Munich, 3MCML, Munich

Motivation

Paper References
[1] Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han, and Rui Zhang. 2024. When can LLMs actually correct their own mistakes? a critical survey of self-correction of LLMs. Transactions of the Association for Computational Linguistics.

[2] Aaquib Syed, Can Rager, and Arthur Conmy. 2024. Attribution patching outperforms automated circuit discovery. Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP.

[3] John Hewitt and Christopher D. Manning. 2019. A Structural Probe for Finding Syntax in Word Representations. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics.

John has 5 eggs and he buys 9 more at the
supermarket, how many eggs does he have in total?

5 + 9 = 13

What mechanisms drive the detection of simple arithmetic errors in language models?

Problem: Anne has 6 apples. She gets 7 more apples.
How many apples does she have now? Reasoning:
Anne has 6 + 7 = 13 apples. So, she has 17 apples in
total. Answer: The above reasoning is → incorrect

Problem: Anne has 6 apples. She gets 7 more apples.
How many apples does she have now? Reasoning:
Anne has 6 + 7 = 17 apples. So, she has 13 apples in
total. Answer: The above reasoning is → incorrect

Problem: Anne has 6 apples. She gets 7 more apples.
How many apples does she have now? Reasoning:
Anne has 6 + 7 = 17 apples. So, she has 17 apples in
total. Answer: The above reasoning is → incorrect

The Error Detection Mechanism Computation vs. Validation

We consider simple aritmetic problem involving a single addition and three types of errors:
1) errors in the arithmetic result 2) errors in the final answer 3) errors in both these positions

We evaluate 4 small Instruction-tuned LMs: Qwen-2.5-(Math)-1.5B-Instruct, Llama-3.2-3B-Instruct, Phi-3.5-Mini-Instruct

We identified subgraphs, or circuits, for
detecting errors in the arithmetic result
and final answer positions using Edge
Attribution Patching (EAP) [2]
EAP approximates the effect of replacing
activations from prompts without an
error with those from prompts
containing an error to identify which
components are causally responsible for
predicting that there is an error.

We identified within these circuits a
set of Consistency Heads—attention
heads that assess the surface-level
alignment of numerical values in the
result and final answer. These heads
are typically found in the middle
layers.

[op1-in-eq]
[plus]
[op2-in-eq]
[equals]
[space_after_eq]

6
+
7
=

[result-first]
[result-second]
[answer-first]
[answer-second]

1
3
1
7

Consistency Heads play an important
causal role in error detection, supported
by two key results:
1. We found that models exhibit a strong

bias toward classifying prompts with
errors in both positions as “correct.”

2. Causally intervening on these heads
improves the models’ performance on
such prompts.

Accuracy on Both errors

Our results suggest that models validate prompts by relying on surface-level
consistency checks.

But what about the arithmetic result? Can models compute it correctly? (100%!)

We used EAP to identify a circuit responsible for computing the arithmetic result.

We trained linear probes [3] to predict
the correct arithmetic result based on the
hidden states of the model. This allowed
us to understand which layers encode
information useful for predicting the
arithmetic result.
Only the later layers show high
accuracy, indicating that the information
is not available in the middle layers,
where consistency heads operate.

Bridging the gap between computation
and validation by adding representations
from higher layers to earlier ones is highly
effective.
This approach boosts the accuracy of
models on prompts with errors in both
positions, without negatively affecting
prompts with only one type of error.

Code

Data and Models

